mesytec MSCF-16 F is a shaping / timing filter amplifier with constant fraction discriminator and multiplicity trigger and provides active baseline restorers. It is well suited for multi strip silicon detectors and for high quality spectroscopy applications. The differential input version is ideal with the pre amplifier family MPR-16 / -32 / -64.
For Ge-detectors see data sheet for MSCF-16 LN. For direct PMT interfacing see data sheet MSCF-16-F-C.

Features:

- 16 channel NIM module, low power design
- Shaping amplifier with active baseline restorer
- Timing filter amplifier
- CF discriminators (opt.: leading edge)
- ECL timing output with digital delay of 450 ns
- Trigger output (NIM)
- Multiplicity trigger (NIM)
- Remote control of discriminator thresholds, shaping time, gains, PZ, threshold
- 4 shaping times
- Gain adjustable from 1 to 600 (optional 2000)
- Differential or unipolar (Lemo) input versions.
- Low noise: <7 µV (gain = 100 and shaping time = 2 µs)
- Low integral non-linearity
- Fully controllable via front panel
- Remote control via USB and mesytec control bus
- 4 selectable timing filter integration times
- ECL timing delay can be switched off

Schematics:

mesytec GmbH & Co. KG
Wernher-von-Braun-Str. 1, D-85640 Putzbrun, Germany
phone: +49 – 89 / 456007-30 fax: +49 – 89 / 456007-39
info@mesytec.com – www.mesytec.com
Technical Data

Input stage

- Polarity setting

Polarity of input signal can be set by jumper position. In the picture below, the lower jumper is set to the two positions.

For header connector, positive signal means: positive at + input and negative on – input.

- Gain adjust: gain can be set from 1 to 20 in 16 steps with factor 1.22 per step. The gain is multiplied with the gain jumper factor. So with a gain jumper G2, and G30 a total gain of 2 to 600 is standard.

unipolar version

- Input connectors: 16 x Lemo 00 series
- Input termination: 50 Ω, coded on the gain-polarity jumper are possible. Gain jumpers from gain = 1 to 95 are possible. See table for details

differential version

- Input connector: 34 pin male connector
- Input resistance: terminated with 100 Ω, adapted to twisted pair cables.
- Gain-Polarity jumper with multiplication factor of G2 and G30 are standard. (Total Gain range from 2 to 600)
- Common mode suppression: >50 dB

When using unipolar jumpers for MSCF-16 with 34 pin input header connectors, the "-" lines are grounded. MHL-32 or MAD-34 adaptors can be used to interface to Lemo.

Noise

- Input noise at gain = 100 and 2 us shaping time = 7 uVrms.

Shaper

- PZ adjustable with front panel trimmer
- 5th order filter CR-RC5
- Four shaping times selectable for groups of 4 channels
- Output amplitude: 0 to 10 V at 1 kΩ
- Active baseline restorer
- DC-Offset: VDC ← 5 mV, common offset adjust
- Output connector: 34 pin male connector
- Integral non linearity <0.05 %
- Gain drift <0.0075 %/°C
- Offset drift <50 μV/°C

Timing filter amplifier

- Four selectable integration times.
- Differentiation times are selected with shaping time (See Table).

Discriminator:

- CFD or Leading edge (jumper selectable)
- CFD delays, and fraction selectable for group of 4 channels
- CFD – Walk: for 30 ns (10 % to 90 %) input rise time, ±1 ns (dynamic range 100:1)
- Threshold: adjustable, 0 % to 30 % of maximum range, in 256 steps
- CFD fractions: selectable for groups of 4: 20 % or 40 %
- CFD – Walk: for 30 ns (10 % to 90 %) input rise time, max 1 ns (dynamic range 100:1)
Fraction and delay selection of the 4 channel CFD plug on modules

Fraction (sw 1)
On: 20 %
Off: 40 %

Delay (sw 1, 2)
off off: 20 ns
on off: 40 ns
off on: 80 ns
on on: 120 ns

Example: CFD-120

For other CFD delays see section “Tables”
See also label inside the movable module side plate.

Multiplicity trigger

- Each channel above threshold contributes to multiplicity level, a multiplicity trigger is generated for: lower multiplicity threshold <= multiplicity level <= upper multiplicity threshold
- Coincidence interval adjustable via RC from 20 ns up to 200 ns (default 120 ns = Value 128).
- The multiplicity trigger is delayed by the coincidence time to the trigger signal.
- Multiplicities selectable via remote control
- Lower multiplicity threshold: 1 … 8 and inf
- Multiplicity chaining: multiplicity outputs from several modules can be connected, resulting in a total multiplicity level of all connected modules. Multiplicity trigger windows of the connected modules act independently on the total multiplicity.

Timing delay, ECL output

- Pulse width for NIM trigger output: 450 ns
- Timing stop ECL-Signals:
 delay see table, can be switched off.
 Pulse width 200 ns
- Output connector: 34 pin male connector

Power consumption: (max 9 W)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 6 V</td>
<td>360 mA</td>
</tr>
<tr>
<td>− 6 V</td>
<td>−780 mA</td>
</tr>
<tr>
<td>+12 V</td>
<td>270 mA</td>
</tr>
</tbody>
</table>
MSCF-16 Front panel Operation

Most MSCF-16 parameters can be set and controlled via front panel elements.

Two parameters can be adjusted for each channel individually:
- threshold
- PZ compensation

Two parameters can be adjusted in groups of four channels (channel 1–4, 5–8, 9–12 and 13–16):
- Gain
- Shaping time

Three parameters can be set only for all channels by switches on the motherboard:
- Baseline restorer (BLK) on / off
- Timing (ECL) delay on / off
- TF integration: four times (see table)

All parameters can as well be set up for all channels in common. Thus there are two different modes of front panel operation:

Common mode:
Threshold, PZ, Gain and Shaping time have a common setting for all channels

Single mode:
Threshold and PZ settings for each individual channel
Gain and Shaping time for each groups of four channels

Common parameters can be copied to individual parameters to easily get a basis for individual settings. this is done by clicking the “Single chan” knob while “enter” is pressed

Mode select
Clicking the “single chan” knob switches between single and common operating mode. The orange LED associated with the “single chan” knob signals single channel mode when lighted.

Monitor / Active Channel

One out of 16 available channels is available at the energy and timing monitor outputs. This is also the channel to be modified in Single mode.

Shaping time

Shaping times are changed around by clicking the “Sht” knob, the shaping time value of the currently selected channel (group) is displayed by two LEDs. They indicate an index from 0 (“1” and “2” LEDs both off) up to 3 (both LEDs on). Please refer to individual device labelling for corresponding shaping times.

Gain

Gain values are set by the gain dial, gain values are indicated on the front panel. Gain ranges from 1.0 to 20.0. It can be set commonly for all channels or individual for groups of four channels.

Threshold

Threshold is adjusted with a front panel trimmer, the corresponding voltage can be drawn from the test output. It can be set commonly for all channels or individually for each channel.

PZ

PZ compensation is also adjusted with a front panel trimmer, the corresponding voltage level is output on the test point. It can be set commonly for all channels or individually for each channel.
General setup

Common mode
In common mode, the trimmer settings for threshold and PZ are followed immediately.

Shaping time can be selected for all channels clicking the "Sht" knob. Gain is set for all channels by selecting the desired gain switch position.

Individual mode
In individual channel mode, trimmer changes are only read and activated when the “enter” knob is pressed during changes. Threshold and PZ settings are remembered individually for each channel. Shaping times and gains are valid for a group of four channels.

Copying from Common to Individual
For an easy basic setup, common settings can be copied to the individual section. Fine tuning can then be done based on this basic setup. Copy is done by clicking the “Single chan” knob while “enter” is pressed.

Auto PZ setup
The PZ compensation values can be set up automatically – provided there’s a signal at the respective channels. Holding the “Single chan” knob for about two seconds starts the automatic pz setup. The values found are saved in the individual parameter set. Clicking “Single chan” again during autopz breaks the process.

Remote Controlled Operation
MSCF-16 can be remotely controlled in two ways: USB control and mesytec control bus.

MSCF-16 has two complete parameter sets, one for front panel operation, one for remote control. Switching RC on and off switches between these two parameter sets.

In RC mode there are several more parameters, which will also be used (but can not be controlled) in front panel mode:

- Coincidence time window
- BLR threshold
- Multiplicity trigger thresholds

Only for factory setting or experts:

- Shaper offset
- discriminator threshold offset
USB Control
For USB control a USB 1.1 or 2.0 connection is required. The MSCF-16 can be operated as a
generic serial device on a virtual com port. Virtual
Com Port (VCP) drivers for various operating
systems for this rc mode can be derived from the
manufacturer of the USB interface chip:
www.ftdichip.com/Drivers/VCP.htm

The MSCF-16 can then be controlled e.g. using a
terminal program or a proprietary
control software.

Interface settings
By default, communication is set to:
9.6 kBd, Data format 8N1
Higher baud rates can be set using the “SB” cmd.
On power-up 9.6 kBd will be restored.

Device Parameters
Like in front panel mode thresholds and pz values
can be adjusted in common or individually for
each channel, while shaping times and gains can
be set up for groups of four channels or
in common.
For common settings, there’s one virtual
channel/group added to parameter indices:

Thresholds, pz compensation:
Channels 1 … 16, 17 = common

Gain, shaping time:
Groups 1 … 4, 5 = common.

Command list: (each cmd terminated by <CR>)

SC val Set coincidence time window
(0...255)

SSO val Set shaper offset (0...200)
 def. 100

STO val Set threshold offset (0...200)
 def. 100

SBT val Set BLR threshold (0...255)

ST chan val Set threshold value
chan = 1…17
(17 = common mode)
val = 0...255

SP chan val Set pz value
chan = 1…17
(17 = common mode)
val = 0...255

SS group val Set shaping time for a group
 group = 1…5
(5 = common mode)
val = 0…15

SM hi lo Set multiplicity borders
hi, lo = 1 … 8
hi can also be set to 9 = infinite

MC chan Set monitor output to chan
 chan = 1…16

SI 0/1 Single channel mode
 0 = off, 1 = on

SE 0/1 ECL delay
 0 = off, 1 = on

SF val Timing filter integration time
 val = 0 / 1 / 2 / 3

ON Switch RC mode on
OFF Switch RC mode off

AP Switch automatic pz setting
 on/off

AP chan automatic pz setting for chan
 1…16

CPY F Copy front panel settings to
 RC memory

CPY R Copy RC settings to
 front panel memory

V Display firmware version

Settings via USB remote control will be saved in
permanent memory and will be restored after next
power up.
RC bus control

MSCF-16 can also be controlled using the MRC-1 / MRCC master controller modules.

Bus setup

Up to 32 devices (not only MSCF-16) – 16 on each of the two control buses – can be remotely controlled at a time.

Devices have to be connected with Lemo cables and t-pieces, the last module on a bus has to be terminated with 50 Ω. The RC master is self terminated. Be sure to assign individual device addresses using the address coders!

RC commands

Remote control via RC bus is basically performed by reading and writing the control register page of the MSCF-16. Basic commands are:

Read: RE bus addr memaddr
Write (Set): SE bus addr memaddr val

With:
bus = bus number (0/1)
addr = device address (0 … 15)
memaddr = memory address
val = value

Memory List MSCF-16

The following table shows the MSCF-16 memory layout:

<table>
<thead>
<tr>
<th>ADR</th>
<th>parameter</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gain group 1</td>
<td>Gain setting for channel 1...3 and common mode values from 0...15</td>
</tr>
<tr>
<td>1</td>
<td>Gain group 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Gain group 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gain group 4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Gain common</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Threshold channel 1</td>
<td>Threshold values for channel 1...16, 17 = common mode values from 0...255</td>
</tr>
<tr>
<td>6</td>
<td>Threshold channel 2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Threshold channel 3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Threshold channel 4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Threshold channel 5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Threshold channel 6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Threshold channel 7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Threshold channel 8</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Threshold channel 9</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Threshold channel 10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Threshold channel 11</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Threshold channel 12</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Threshold channel 13</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Threshold channel 14</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Threshold channel 15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Threshold channel 16</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Threshold common</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>PZ value channel 1</td>
<td>PZ values for channel 1...16, 17 = common mode values from 0...255</td>
</tr>
<tr>
<td>23</td>
<td>PZ value channel 2</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>PZ value channel 3</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>PZ value channel 4</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>PZ value channel 5</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>PZ value channel 6</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>PZ value channel 7</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>PZ value channel 8</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>PZ value channel 9</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>PZ value channel 10</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>PZ value channel 11</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>PZ value channel 12</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>PZ value channel 13</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>PZ value channel 14</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>PZ value channel 15</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>PZ value channel 16</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>PZ value common</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Shaping time group 1</td>
<td>Shaping time settings for group 1...3 and common mode values from 0...3</td>
</tr>
<tr>
<td>40</td>
<td>Shaping time group 2</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Shaping time group 3</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Shaping time group 4</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Shaping time common</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Multiplicity hi</td>
<td>Multiplicity values 1...8</td>
</tr>
<tr>
<td>45</td>
<td>Multiplicity lo</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Monitor channel 1...16</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Single channel mode</td>
<td>1 = on, 0 = off</td>
</tr>
<tr>
<td>48</td>
<td>RC</td>
<td>1 = on, 0 = off (set automatically by ON / OFF cmd via MRC-1 / MRCC)</td>
</tr>
<tr>
<td>49</td>
<td>Version information</td>
<td>16* maj + min.</td>
</tr>
<tr>
<td>50</td>
<td>BLR threshold</td>
<td>0...255</td>
</tr>
<tr>
<td>51</td>
<td>BLR on/off</td>
<td>1 = on, 0 = off</td>
</tr>
<tr>
<td>52</td>
<td>Coinc. Time</td>
<td>0...255</td>
</tr>
<tr>
<td>53</td>
<td>Threshold offset</td>
<td>100 (=no offs) +/-100</td>
</tr>
<tr>
<td>54</td>
<td>Shaper offset</td>
<td>100 (=no offs) +/-100</td>
</tr>
<tr>
<td>55</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>ECL trigger delay</td>
<td>0 = off, 1 = on</td>
</tr>
<tr>
<td>58</td>
<td>TF int time</td>
<td>0...3 (one of four)</td>
</tr>
</tbody>
</table>

Parameters can be read / written while RC on or off, but will take effect only when RC is on. While RC ON, the front panel control will be blocked until “Enter” is pressed. When shut down during RC on, the RC values will be restored after next power up and RC will be active again.

Identification code for MSCF-16 (detected when running the scan bus command "SC") is IDC = 20.
MSCF-16 F
16 fold shaper with CFD

MSCF-16 PCB overview

1: Position for the active gain-polarity jumpers.
2: Position to store up to 4 spare jumpers
3: BLR on/off, ECL Trigger delay on/off
4: Timing filter integration time
5: 50 Ohm jumper. Is needed if modules are not connected for common multiplicity.
6 to 9: Connector usually occupied by CFD modules. To use only leading edge discriminators, remove CFD module and insert 16 jumpers at the upper positions, 4 for each connector. The lower pair on each connector is ground and can be left free.
Tables: data, types and ordering

Example MSCF-16 F for particle detector readout

<table>
<thead>
<tr>
<th>Applic.</th>
<th>Module name</th>
<th>Shaping times ((\sigma))</th>
<th>Input type</th>
<th>Input connector</th>
<th>Discriminator</th>
<th>CFD-Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>All particle detectors</td>
<td>MSCF-16_F</td>
<td>_SH2 switchable: 0.25 us, 0.5 us, 1 us, 2 us</td>
<td>_V</td>
<td>Voltage input for charge Preamp. tail pulses</td>
<td>_L</td>
<td>Lemo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>_D</td>
<td>Differential</td>
</tr>
</tbody>
</table>

Connected parameters: The timing filter differentiation time corresponds to the selected shaping time. So shortest shaping time results in shortest TF differentiation time.

CFD plug in modules (4 modules per MSCF16 needed)

<table>
<thead>
<tr>
<th>CFD-Name</th>
<th>Fraction (via dipswitch)</th>
<th>Delays (via dipswitch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD-30</td>
<td>20 % / 40 %</td>
<td>5, 10, 20, 30 ns</td>
</tr>
<tr>
<td>CFD-60</td>
<td>20 % / 40 %</td>
<td>10, 20, 40, 60 ns</td>
</tr>
<tr>
<td>CFD-120</td>
<td>20 % / 40 %</td>
<td>20, 40, 80, 120 ns</td>
</tr>
<tr>
<td>CFD-200</td>
<td>20 % / 40 %</td>
<td>30, 60, 130, 200 ns</td>
</tr>
</tbody>
</table>

Preferred type

<table>
<thead>
<tr>
<th>Applic.</th>
<th>Module name</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon Detectors IO Chambers</td>
<td>MSCF16_F_SH2_V_X_CFD120 with X="D": FRC Header input X="L": Lemo inputs</td>
<td>Shaping times: 0.25 us, 0.5 us, 1 us, 2 us (sigma) Gain jumpers: G2, G30 ECL output delay 0.4 us TF differentiation time of 70, 150, 300, 600 ns TF integration time 20, 40, 80, 120 ns BLR threshold step: 4 mV (max 1.0 V)</td>
</tr>
</tbody>
</table>
MSCF-16 F
16 fold shaper with CFD

Special types

<table>
<thead>
<tr>
<th>Applic.</th>
<th>Module name</th>
<th>comment</th>
</tr>
</thead>
</table>
| Silicon Detectors
IO Chambers
MWPC… | MSCF16_F_SH4_V_X_LE
with
X="D": FRC Header input
X="L": Lemo inputs | Shaping times: 0.5 us, 1 us, 2 us, 4 us (sigma)
Gain jumpers: G2, G30
ECL output delay 0.8 us
TF differentiation time of 140 ns, 300 ns, 600 ns,
1.2 us
TF integration time 40, 80, 150, 220 ns
BLR threshold step: 4 mV (max 1.0 V) |
| Scintillators
Silicon Detectors
MWPC… | MSCF16_F_SH1_V_X_LE
with
X="D": FRC Header input
X="L": Lemo inputs | Shaping times: 0.12 s, 0.25 us, 0.5 us, 1 us (sigma)
Gain jumpers: G2, G30
ECL output delay 0.4 us
TF differentiation time of 35 ns, 75 ns, 150 ns,
300 ns
TF integration time 10, 20, 35, 50 ns
BLR threshold step: 4 mV (max 1.0 V) |

For Ge- Detectors see MSCF16_LN series.
For direct PMT interfacing see datasheet MSCF-16-F-C.